Alarm penanda kebakaran

 

  1. Tujuan

  •  Untuk dapat mengetahui penggunaan flame sensor
  •  Untuk dapat membuat rangkaian kontrol pemadam kebakaran sendiri
  •  Untuk dapat lebih memahami karakteristik flame sensor

  2. ALAT BAN BAHAN [kembali]

a. Baterai

 

Baterai merupakan perangkat yang digunakan untuk memberi daya terhadap alat yang membutuhkan listrik. Baterai juga merupakan komponen elektronika penghasil sumber tegangan pada rangkaian. Semua baterai pada spesifikasinya juga pasti selalu terdapat spesifikasi arus yang biasanya diukur dengan satuan mili ampere hours atau disingkat mAH, spesifikasi menunjukkan seberapa lama baterai bisa digunakan pada beban / alat yang digunakan. Misalnya sebuah baterai 1900mAH bisa menyuplai 1900mA ke sebuah rangkain selama 1 jam sebelum akhirnya habis.
 

b. LED

 
LED adalah perangkat elektronik yang dapat mengeluarkan cahaya. Strukturnya juga sama dengan dioda, tetapi pada LED elektron menerjang sambungan P-N (Positif-Negatif).
 

c. Relay

Pengertian dan Cara Kerja Relay | Panduan Teknisi

 

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). 
 

d. Motor DC 


Motor DC dan Jenis-jenisnya – Himpunan Mahasiswa Teknik Komputer

Motor DC adalah Motor listrik yang membutuhkan suplai tegangan arus searah atau arus DC (Direct Current) pada kumparan medan untuk diubah menjadi energi mekanik. 
 

e. Transistor NPN 


 
Transistor merupakan salah satu Komponen Elektronika Aktif yang paling sering digunakan dalam rangkaian Elektronika, baik rangkaian Elektronika yang paling sederhana maupun rangkaian Elektronika yang rumit dan kompleks. Transistor pada umumnya terbuat dari bahan semikonduktor seperti Germanium, Silikon, dan Gallium Arsenide.

f. Buzzer 

Buzzer Listrik adalah sebuah komponen elektronika yang dapat mengubah sinyal listrik menjadi getaran suara
 

g. Flame detector

 

Sensor ini sensitiv terhadap api dan radiasi. Biasanya digunakan pada rangkaian alarm kebakaran atau kejuaraan robot pendeteksi kebakaran.Dapat mendeteksi cahaya dengan panjang gelombang dalam jarak tertentu
Spesifikasi:
1.mendeteksi cahaya dengan rentang panjang gelombang 760-1100 nm
2. jarak deteksi : 20cm (4.8V) hingga 100 cm (1V)
3.sudut deteksi : 60°

4. tegangan operasi : 3.3-5V
5. tegangan keluaran : analog
 

h. MQ2

 
 
 

Sensor gas ini tersusun oleh senyawa SnO2 dengan sifat konduktifitas(penghantar) rendah pada udara bersih. Sifat konduktifitas semakin naik jika konsentrasi ga
s asap semakin tingi di sekitas sensor ini.

-Spesifikasi:

1. Catu daya pemanas   :  5V AC/DC
2. Catu daya rangkaian :  5V DC
3. Range pengukuran    :  200-5000 ppm untuk LPG, 300-5000 ppm untuk butana, 5000-20000 ppm untuk metana, dan 300-5000 ppm untuk hidrogen
4. Keluaran                   :  Analog (perubahan Tegangan)
 

 3. DASAR TEORI [kembali]

a . Baterai

Daya tahan baterai akan semakin awet jika penggunaan arus nya semakin kecil, pada contoh diatas jika arus yang diperlukan misalnya adalah 190mAH maka baterai tadi akan bertahan selama 10 jam karena pada perhitungannya :


190 mAH x 10 hours = 1900 mAH


Oleh karena itu pada spesifikasi baterai semakin tinggi atau semakin besar kapasitas arus mAH nya maka semakin lama juga umur dari baterai tersebut. Baterai AA biasanya adalah jenis yang memiliki arus paling kecil sedangkan type D bisa bertahan cukup lama karena dari segi fisik pun memang lebih besar dan pastinya lebih mahal.

Simbol baterai :

b. LED

Pemasangan kutub LED tidak boleh terebalik karena apabila terbalik kutubnya maka LED tersebut tidak akan menyala. Led memiliki karakteristik berbeda-beda menurut warna yang dihasilkan. Semakin tinggi arus yang mengalir pada LED maka semakin terang pula cahaya yang dihasilkan, namun perlu diperhatikan bahwa besarnya arus yang diperbolehkan adalah 10mA-20mA dan pada tegangan 1,6V – 3,5 V menurut karakter warna yang dihasilkan. Apabila arus yang mengalir lebih dari 20mA maka LED akan terbakar. Untuk menjaga agar LED tidak terbakar perlu kita gunakan resistor sebagai penghambat arus.

Arah arus konvensional hanya dapat mengalir dari anoda ke katoda. Untuk pemasangan LED pada board mikrokontroller Anoda dihubungkan ke sumber tegangan dan katoda dihubungkan ke ground.

Simbol LED :



c. Relay

Relay adalah komponen elektronika berupa saklar elektronik yang digerakkan oleh aruslistrik. Secara prinsip, relay merupakan tuas saklar dengan lilitan kawat pada batang besi (solenoid) di dekatnya.Ketika solenoid dialiri aruslistrik, tuasa kantertarik karena adanya gaya magnet yang terjadi pada solenoid sehingga kontak saklarakan menutup. Pada saat arus ihentikan, gaya magnet akan hilang, tuasakan kembalikeposisi semula dan konta ksaklar kembali terbuka.Relay biasanya digunakan untuk menggerakkan arus / tegangan yang besar (misalnyaperalatanlistrik 4 A / AC 220 V) denganmemakaiarus / tegangan yang kecil (misalnya 0.1 A / 12 Volt DC). 

Gambar Bentuk dan Simbol Relay

Gambar bentuk dan Simbol relay


 Struktur dasar Relay

Fungsi-fungsi dan Aplikasi Relay

Beberapa fungsi Relay yang telah umum diaplikasikan kedalam peralatan Elektronika diantaranya adalah :

  1. Relay digunakan untuk menjalankan Fungsi Logika (Logic Function)
  2. Relay digunakan untuk memberikan Fungsi penundaan waktu (Time Delay Function)
  3. Relay digunakan untuk mengendalikan Sirkuit Tegangan tinggi dengan bantuan dari Signal Tegangan rendah.
  4. Ada juga Relay yang berfungsi untuk melindungi Motor ataupun komponen lainnya dari kelebihan Tegangan ataupun hubung singkat (Short).

 d. Motor DC

Seperti yang sudah dijelaskan sebelumnya bahwa motor terdiri atas 2 bagian utama yaitu stator dan motor. Pada stator terdapat lilitan (winding) atau magnet permanen, sedangkan rotor adalah bagian yang dialiri dengan sumber arus DC. Arus yang melalui medan magnet inilah yang menyebabkan rotor dapat berputar. Arah gaya elektromagnet yang ditimbulkan akibat medan magnet yang dilalui oleh arus dapat ditentukan dengan menggunakan kaidah tangan kanan.


          

Keuntungan utama motor DC adalah sebagai pengendali kecepatan, yang tidak mempengaruhi kualitas pasokan daya. Motor ini dapat dikendalikan dengan mengatur:
• Tegangan dinamo : meningkatkan tegangan dinamo akan meningkatkan kecepatan
• Arus medan : menurunkan arus medan akan meningkatkan kecepatan.
 

Mekanisme Kerja Motor DC

Mekanisme kerja untuk seluruh jenis motor secara umum sama
Arus listrik dalam medan magnet akan menimbulkan gaya.
· Jika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran/loop, maka kedua sisi loop yaitu pada sudut kanan medan magnet akan mendapat gaya pada arah yang berlawanan.
· Pasangan gaya menghasilkan torsi untuk memutar kumparan.
· Motor- motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putar yang lebih seragam dari medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan

Beberapa kerugian penggunaan motor DC:

-Perawatan intensif karena brush atau sikat pada motor DC akan aus.

-Konversi arus AC menjadi arus DC menggunakan konverter memerlukan biaya yang mahal.

Keuntungan penggunaan motor DC:

-Kecepatannya mudah diatur.

Perhitungan pada motor DC :


Daya input      :           Pin= √3 Vrms Irms cosƟ

Daya output    :           Pout= Tout w

w = kecepatan sudut

Tout = torsi output

Efisiensi          :           η (%) = (Pout/Pin) x 100

 

Mengapa terdapat efisiensi pada motor? Karena motor yang digunakan tidak dapat bersifat ideal, artinya pada motor ada kehilangan daya pada setiap prosesnya sehingga daya output akan bernilai lebih kecil daripada daya input. Kehilangan daya ini biasa disebut sebagai rugi-rugi daya dan dapat disebabkan karena mechanical (gesekan dan rotasi) serta electric (hambatan pada belitan).

Simbol motor listrik

e. Transistor NPN 


Fungsi-fungsi Transistor diantaranya adalah :


  • sebagai Penyearah,
  • sebagai Penguat tegangan dan daya,
  • sebagai Stabilisasi tegangan,
  • sebagai Mixer,
  • sebagai Osilator
  • sebagai Switch (Pemutus dan Penyambung Sirkuit)

Struktur Dasar Transistor

Pada dasarnya, Transistor adalah Komponen Elektronika yang terdiri dari 3 Lapisan Semikonduktor dan memiliki 3 Terminal (kaki) yaitu Terminal Emitor yang disingkat dengan huruf “E”, Terminal Base (Basis) yang disingkat dengan huruf “B” serta Terminal Collector/Kolektor yang disingkat dengan huruf “C”. Berdasarkan strukturnya, Transistor sebenarnya merupakan gabungan dari sambungan 2 dioda. Dari gabungan tersebut , Transistor kemudian dibagi menjadi 2 tipe yaitu Transistor tipe NPN dan Transistor tipe PNP yang disebut juga dengan Transistor Bipolar. Dikatakan Bipolar karena memiliki 2 polaritas dalam membawa arus listrik.

NPN merupakan singkatan dari Negatif-Positif-Negatif sedangkan PNP adalah singkatan dari Positif-Negatif-Positif.

Berikut ini adalah gambar tipe Transistor berdasarkan Lapisan Semikonduktor yang membentuknya beserta simbol Transistor NPN dan PNP.

Tipe Transistor NPN dan PNP beserta simbolnya

Cara Mengukur Transistor

Kita dapat menggunakan Multimeter Analog maupun Multimeter Digital untuk mengukur ataupun menguji apakah sebuah Transistor masih dalam kondisi yang baik. Perlu diingatkan bahwa terdapat perbedaan tata letak Polaritas (Merah dan Hitam) Probe Multimeter Analog dan Multimeter Digital dalam mengukur/menguji sebuah Transistor.

Berikut ini adalah Cara untuk menguji atau mengukur Transistor dengan Mengunakan Multimeter Analog dan Multimeter Digital.

A. Mengukur Transistor dengan Multimeter Analog

Cara mengukur Transistor dengan Multimeter Analog

Cara Mengukur Transistor PNP dengan Multimeter Analog

1. Atur Posisi Saklar pada Posisi OHM (Ω) x1k atau x10k
2. Hubungkan Probe Merah pada Terminal Basis (B) dan Probe Hitam pada Terminal Emitor (E), Jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik
3. Pindahkan Probe Hitam pada Terminal Kolektor (C), jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik.

Cara Mengukur Transistor NPN dengan Multimeter Analog

1. Atur Posisi Saklar pada Posisi OHM (Ω) x1k atau x10k
2. Hubungkan Probe Hitam pada Terminal Basis (B) dan Probe Merah pada Terminal Emitor (E), Jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik
3. Pindahkan Probe Merah pada Terminal Kolektor (C), jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik.

Catatan :
Jika Tata letak Probe dibalikan dari cara yang disebutkan diatas, maka Jarum pada Multimeter Analog harus tidak akan bergerak sama sekali atau “Open”.


B. Mengukur Transistor dengan Multimeter Digital

Pada umumnya, Multimeter Digital memiliki fungsi mengukur Dioda dan Resistansi (Ohm) dalam Saklar yang sama. Maka untuk Multimeter Digital jenis ini, Pengujian Multimeter adalah terbalik dengan Cara Menguji Transistor dengan Menggunakan Multimeter Analog.

Cara Mengukur Transistor dengan Multimeter Digital

Cara Mengukur Transistor PNP dengan Multimeter Digital


1. Atur Posisi Saklar pada Posisi Dioda
2. Hubungkan Probe Hitam pada Terminal Basis (B) dan Probe Merah pada Terminal Emitor (E), Jika Display Multimeter menunjukan nilai Voltage tertentu, berarti Transistor tersebut dalam kondisi baik
3. Pindahkan Probe Merah pada Terminal Kolektor (C), jika Display Multimeter nilai Voltage tertentu, berarti Transistor tersebut dalam kondisi baik.

Cara Mengukur Transistor NPN dengan Multimeter Digital


    1. Atur Posisi Saklar pada Posisi Dioda
    2. Hubungkan Probe Merah pada Terminal Basis (B) dan Probe Hitam pada Terminal Emitor (E), Jika Display Multimeter menunjukan nilai Voltage tertentu, berarti Transistor tersebut dalam kondisi baik
    3. Pindahkan Probe Hitam pada Terminal Kolektor (C), jika Display Multimeter menunjukan nilai Voltage tertentu, berarti Transistor tersebut dalam kondisi baik.
Catatan :
Jika Tata letak Probe dibalikan dari cara yang disebutkan diatas, maka Display Multimeter Digital harus tidak akan menunjukan Nilai Voltage atau “Open”.

Simbol Transistor

f. Buzzer

Buzzer adalah sebuah komponen elektronika yang berfungsi untuk mengubah getaran listrik menjadi getaran suara.  Perangkat elektronika ini terbuat dari elemen piezoceramics yang diletakkan pada suatu diafragma yang mengubah getaran/vibrasi menjadi gelombang suara. Buzzer menggunakan resonansi untuk memperkuat intensitas suara.
 
Buzzer atau beeper memiliki 2 tipe :
  1. Resonator sederhana yang disuplai sumber AC.
  2. Melibatkan transistor sebagai micro-oscillator yang membutuhkan sumber DC.

Cara kerja buzzer sebenarnya mirip dengan prinsip kerja dari loud speaker, komponen buzzer juga terdiri dari kumparan yang terpasang pada diafragma dan kemudian saat kumparan tersebut dialiri arus dan tercipta medan elektromagnet, kumparan tadi akan tertarik ke dalam atau keluar, tergantung dari arah arus dan polaritas magnetnya.

karena kumparan dipasang pada diafragma maka setiap gerakan kumparan akan menggerakkan diafragma secara bolak-balik sehingga membuat udara bergetar yang akan menghasilkan suara. Buzzer biasa digunakan sebagai indikator bahwa proses telah selesai atau terjadi suatu kesalahan pada sebuah alat (alarm).
 

g. Flame detector

Salah satu detektor yang memiliki fungsi terpenting adalah detektor api atau yang biasa disebut dengan Flame Detector yang mampu mengaktifkan alarm bila mendeteksi adanya percikan api yang berisiko menyebabkan bencana kebakaran.
 
Prinsip Flame Detektor menggunakan metode optik yang bekerja seperti UV (ultraviolet) dan IR (infrared), pencitraan visual api, serta spektroskopi yang berfungsi untuk mengidentifikasi percikan api atau flame. Reaksi intens bahan yang memicu kebakaran dapat ditandai dari UV, terlihatnya emisi karbondioksida, dan radiasi dari infrared. Flame Detector juga mampu membedakan antara False Alarm atau peringatan palsu dengan api kebakaran sungguhan melalui komponen sistem yang dirancang dengan fungsi mendeteksi adanya penyerapan cahaya yang terjadi pada gelombang tertentu.
 
Teknologi Flame Sensing yang umum digunakan adalah teknologi Visual Flame Imaging, UV atau ultraviolet, MSIR atau Multi-Spectrum Infrared, dan UV/IR yang merupakan gabungan dari ultraviolet/infrared. Keempat teknologi tersebut dirancang berdasarkan dengan deteksi radiasi line-of-sight yang berasal dari visible, UV, hingga IR spectral bands oleh percikan api.

Jenis Flame Detektor

  •  UV Flame Detektor
  •  UV/IR Flame Detektor
  • Multi-Spectrum IR Flame Detektor (MSIR)
  • Visual Flame Imaging Detektor
 

h. MQ2

Sensor jenis ini adalah alat yang digunakan untuk mendeteksi konsentrasi gas yang mudah terbakar di udara serta asap dan output membaca sebagai tegangan analog. Sensor gas asap MQ-2 dapat langsung diatur sensitifitasnya dengan memutar trimpotnya.
 
Sensor gas ini tersusun oleh senyawa SnO2, dengan sifat conductivity rendah pada udara yang bersih, atau sifat penghantar yang tidak baik. Sifat conductivity semakin naik jika konsentrasi gas asap semakin tinggi di sekitar sensor gas. 

Konfigurasi Sensor MQ-2


MQ-2 Pinout
Sensor MQ-2 terdapat 2 masukan tegangan yakni VH dan VC. VH digunakan untuk tegangan pada pemanas (Heater) internal dan Vc merupakan tegangan sumber serta memiliki keluaran yang menghasilkan tegangan berupa tegangan analog. Berikut konfigurasi dari sensor MQ-S :

  1. Pin 1 merupakan heater internal yang terhubung dengan ground.
  2. Pin 2 merupakan tegangan sumber (VC) dimana Vc < 24 VDC.
  3. Pin 3 (VH) digunakan untuk tegangan pada pemanas (heater internal) dimana VH = 5VDC.
  4. Pin 4 merupakan output yang akan menghasilkan tegangan analog.

Prinsip Kerja


Sensor Asap MQ-2 berfungsi untuk mendeteksi keberadaan asap yang berasal dari gas mudah terbakar di udara. Pada dasarnya sensor ini terdiri dari tabung aluminium yang dikelilingi oleh silikon dan di pusatnya ada elektroda yang terbuat dari aurum di mana ada element pemanasnya.

Ketika terjadi proses pemanasan, kumparan akan dipanaskan sehingga SnO2 keramik menjadi semikonduktor atau sebagai penghantar sehingga melepaskan elektron dan ketika asap dideteksi oleh sensor dan mencapai aurum elektroda maka output sensor MQ-2 akan menghasilkan tegangan analog.

Sensor MQ-2 ini memiliki 6 buah masukan yang terdiri dari tiga buah power supply (Vcc) sebasar +5 volt untuk mengaktifkan heater dan sensor, Vss (Ground), dan pin keluaran dari sensor tersebut.

 4. PERCOBAAN [kembali]

a. Prosedur percobaan:

  • Susun rangkaian sesuai ketentuan
  • Kemudian RUN rangkaian, saat terdeteksi gas berupa asap oleh MQ-2 maka buzzer,LED, dan motor akan menyala 
  • Saat sensor mendeteksi adanya gas berupa asap oleh MQ-2 maka buzzer,LED, dan motor akan menyala 
  • Saat sensor api mendeteksi titik api, dan sensor gas meendeteksi adanya asap maka buzzer, motor, dan LED akan aktif' 
  • Rangkaian selesai dibuat 

b. Hardware: Tidak ada (hanya ada di praktikum) 

c, Rangkaian simulasi 

  •  FOTO
 


  •  Prinsip Kerja

Saat tidak ada titik api ataupun gas yang terdeteksi, tidak ada arus yang mengalir dari sensor ke transistor. Sehingga relay tidak aktif dan buzzer, motor, dan LED tidak bisa hidup. Saat terdeteksi gas oleh sensor MQ-2 (logic state bernilai 1) maka akan ada arus yang mengalir ke basis transistor Q2 sehingga arus dari baterai B2 bisa mengalir dari kolektor ke emitter Q2 dan kemudian diteruskan ke ground. Hal ini menyebabkan relay aktif sehingga arus dari baterai B1 bisa mengalir ke buzzer, motor, dan LED sehingga dalam keadaan ON.
 Saat sensor MQ-2 tidak aktif (logic state bernilai 0) maka arus yang mengalir kecil dan kurang dari 0.7 V sehingga tidak bisa mengaktifkan base Q2, maka relay off,

Saat terdeteksi titik api oleh flame sensor (logic state 1) maka akan ada arus yang mengalir ke base transistor Q1 sehingga arus dari baterai B2 akan dapat mengalir menuju kolektor lalu emitter Q1 dan masuk ke kolektor kemudian emittor Q2 dan diteruskan ke ground. Hal ini menyebabkan relay aktif dan arus dari baterai B1 dapat menghidupkan buzzer, motor, dan LED
Saat tidak terdeteksi titik api (logic state bernilai 0) maka arus yang ada sangat kecil sehingga tidak bisa mengaktifkan transistor Q1, yang menyebabkan arus dari baterai B1 tidak dapat mengalir dari kolektor menuju emitter Q1 sehingga Relay off dan menyebabkan motor, buzzer, dan LED off

Saat terdeteksi gas dan titik api maka akan ada arus yang mengalir ke base transistor Q1 sehingga arus dari baterai B2 akan dapat mengalir menuju kolektor lalu emitter Q1 dan masuk ke kolektor kemudian emitter Q2 dan diteruskan ke ground. Juga akan ada arus yang mengalir ke basis transistor Q2 sehingga arus dari baterai B2 bisa mengalir dari kolektor ke emitter Q2 dan kemudian diteruskan ke ground. Hal ini menyebabkan relay aktif dan arus dari baterai B1 dapat menghidupkan buzzer, motor, dan LED

d. video




e. Download file

Komentar

Postingan populer dari blog ini

Halaman Awal