Pintu Darurat Gempa

 Ide dari gambar 20.10


Tujuan

1. Untuk mempermudah evakuasi saat terjadi gempa
2. Untuk mengatasi kecemasan saat gempa, yaitu ketika orang-orang berebut membuka pintu agar bisa keluar dengan cepat.
3. Untuk memahami rangkaian pintu darurat gempa

Alat Dan Bahan

a. Sensor Getaran



Sensor getaran adalah suatu alat yang berfungsi untuk mendeteksi adanya getaran dan akan diubah dalam ke dalam sinyal listrik


b. DC Generator




DC Generator ini adalah alat/komponen yang digunakan sebagai pemberi sumber tegangan pada rangkaian.

c.  Motor DC 


Motor DC dan Jenis-jenisnya – Himpunan Mahasiswa Teknik Komputer

Motor DC adalah Motor listrik yang membutuhkan suplai tegangan arus searah atau arus DC (Direct Current) pada kumparan medan untuk diubah menjadi energi mekanik. 
 

d. Transistor NPN 


 
Transistor merupakan salah satu Komponen Elektronika Aktif yang paling sering digunakan dalam rangkaian Elektronika, baik rangkaian Elektronika yang paling sederhana maupun rangkaian Elektronika yang rumit dan kompleks. Transistor pada umumnya terbuat dari bahan semikonduktor seperti Germanium, Silikon, dan Gallium Arsenide.
 

e. Relay

Pengertian dan Cara Kerja Relay | Panduan Teknisi

 

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch).

 f. Sensor Pir


Sensor PIR HC-SR501 Motion Sensor Module Arduino Raspberry di ... 

 Sensor PIR merupakan sensor yang dapat mendeteksi pergerakan

g. Resistor

Resistor adalah perangkat elektronik yang berperan sebagai penghambat tengangan suatu rangkaian. Resistor ini memiliki berbagai variasi hambatan yang satuannya ohm.
 

h. Op - Amp




Op - Amp digunakan sebagai rangkaian detector. Pada saat Vout dari sensor lebih kecil dari Vref, maka akan mengahasilkan -Vsat. Dan pada saat Vout sensor lebih besar dari Vref, maka akan menghasilkan +Vsat.

Dasar Teori

a. Sensor Getaran

Sensor ini disebut juga cassing measurement. Sensor yang digunakan adalah sensor seismic   transduser, yaitu sensor yang digunakan untuk mengukur kecepatan dan percepatan. Untuk mengukur kecepatan menggunakan velocity probe dan velomitor probe, sedangkan untuk mengukur percepatan menggunakan sensor acceleration probe.

    a. Velocity probe

1) Pengertian

Ujung sensor ini akan bersentuhan langsung dengan benda yang akan diukur fibrasinya, sensor ini berfungsi untuk mengukur getaran dari suatu alat atau mesin menggunakan kecepatan sebagai parameternya.

Adapun konstruksinya adalah sbb :

  1. Massa
  2. Kumparan
  3. Pegas
  4. Magnet permanen
  5. Damper Connector
  6. Cassing velocity probe

2) Prinsip Kerja

Prinsip kerja velocity probe sesuai dengan hukum fisika yaitu apabila suatu konduktor/kumparan yang dikelilingi oleh medan magnet kemudian koduktor bergerak terhadap medan magnet atau medan magnet bergerak terhadap konduktor maka akan menimbulkan suatu tegangan induksi pada konduktor. Apabila transducer ini ditempatkan pada bagian mesin yang bergetar, maka tranduser inipun akan ikut bergetar, sehingga kumparan yang ada di dalamnya akan bergerak relatif terhadap medan magnet sehingga akan menghasilkan tegangan listrik pada ujung kawat kumparannya. Dengan mengolah sinyal listrik dan transdusernya, maka getaran dapat diukur.

    b. Acceleration Probe

1) Pengertian

Termasuk sensor kontak yang berfungsi untuk mengukur getaran dengan mengukur kecepatan dari mesin tersebut

2) Prinsip kerja

Pada acceleration probe terdapat Case insulator yang berkontak langsung dengan mesin yang hendak diperiksa, Case Insulator ini berfungsi sebagai transmitter atau yang menstransmisikan getaran dari mesin menuju piezoelectric sehingga piezoelectric mengalami tekanan yang sebanding dengan getaran yang diterima dari mesin. Getaran mekanis yang menimbulkan gaya akan mengenai bahan piezoelectric tersebut sehingga bahan piezoelectric tersebut menghasilkan muatan listrik. Tetapi arus listrik yang dihasilkan oleh piezoelectric ini sangat kecil, sehingga diperlukan alat lain agar menghasilkan muatan  listrik yang standard. Karena muatan listrik yang ditimbulkan oleh piezoelectrik sangat kecil maka didalamnya dipasang rangkaian electronik/amplifier yang dapat membangkitkan muatan agar muatan listrik yang dihasilkan oleh bahan piezoelectric menjadi lebih besar. Besar muatan listrik yang dihasilkan oleh bahan piezo electric sebesar picocoulombs per g. Sedangkan besarnya sinyal yang dihasilkan setelah didalamnya dipasang penguat, mempunyai sensitivitas 50 mv per g.

3) Kelebihan

  • Ukuran sangat kecil dan ringan, sehingga cocok untuk dibawa kemana-mana dan bisa dibawa ke tempat kerja yang sempit
  • Sangat sensitive terhadap frekuensi tinggi, karena accelerator probe memiliki range frekuensi yang tinggi sebesar lebih dari 20 KHz
  • Dapat digunakan pada temperatur tinggi, yaitu sampai temperature kurang lebih 500 derajat C
  • Harganya lebih murah dibanding velocity dan displacement probe
Simbol pada rangkaian :



b. DC Generator 

Generator DC merupakan sebuah perangkat mesin listrik dinamis yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah. Generator DC dibedakan menjadi beberapa jenis berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker), jenis generator DC yaitu: 

Konstruksi Generator DC

Pada umumnya generator DC dibuat dengan menggunakan magnet permanent dengan 4-kutub rotor, regulator tegangan digital, proteksi terhadap beban lebih, starter eksitasi, penyearah, bearing dan rumah generator atau casis, serta bagian rotor. Gambar 1 menunjukkan gambar potongan melintang konstruksi generator DC.



Generator DC terdiri dua bagian, yaitu stator, yaitu bagian mesin DC yang diam, dan bagian rotor, yaitu bagian mesin DC yang berputar. Bagian stator terdiri dari: rangka motor, belitan stator, sikat arang, bearing dan terminal box. Sedangkan bagian rotor terdiri dari: komutator, belitan rotor, kipas rotor dan poros rotor.

Bagian yang harus menjadi perhatian untuk perawatan secara rutin adalah sikat arang yang akan memendek dan harus diganti secara periodic / berkala. Komutator harus dibersihkan dari kotoran sisa sikat arang yang menempel dan serbuk arang yang mengisi celah-celah komutator, gunakan amplas halus untuk membersihkan noda bekas sikat arang.

Prinsip kerja Generator DC

Pembangkitan tegangan induksi oleh sebuah generator diperoleh melalui dua cara:

  1. dengan menggunakan cincin-seret, menghasilkan tegangan induksi bolak-balik.
  2. dengan menggunakan komutator, menghasilkan tegangan DC.

Proses pembangkitan tegangan tegangan induksi tersebut dapat dilihat pada Gambar 2 dan Gambar 3.
Gambar 2. Pembangkitan Tegangan Induksi.

Jika rotor diputar dalam pengaruh medan magnet, maka akan terjadi perpotongan medan magnet oleh lilitan kawat pada rotor. Hal ini akan menimbulkan tegangan induksi. Tegangan induksi terbesar terjadi saat rotor menempati posisi seperti Gambar 2 (a) dan (c). Pada posisi ini terjadi perpotongan medan magnet secara maksimum oleh penghantar. Sedangkan posisi jangkar pada Gambar 2.(b), akan menghasilkan tegangan induksi nol. Hal ini karena tidak adanya perpotongan medan magnet dengan penghantar pada jangkar atau rotor. Daerah medan ini disebut daerah netral.
Gambar 3. Tegangan Rotor yang dihasilkan melalui cincin-seret dan komutator.

Jika ujung belitan rotor dihubungkan dengan slip-ring berupa dua cincin (disebut juga dengan cincin seret), seperti ditunjukkan Gambar 3.(1), maka dihasilkan listrik AC (arus bolak-balik) berbentuk sinusoidal. Bila ujung belitan rotor dihubungkan dengan komutator satu cincin Gambar 3.(2) dengan dua belahan, maka dihasilkan listrik DC dengan dua gelombang positip.

  • Rotor dari generator DC akan menghasilkan tegangan induksi bolak-balik. Sebuah komutator berfungsi sebagai penyearah tegangan AC.
  • Besarnya tegangan yang dihasilkan oleh sebuah generator DC, sebanding dengan banyaknya putaran dan besarnya arus eksitasi (arus penguat medan).

Jenis-Jenis Generator DC 

Seperti telah disebutkan diawal, bahwa generator DC berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker) dibagi menjadi 3 jenis, yaitu:
  1. Generator penguat terpisah
  2. Generator shunt
  3. Generator kompon 

c. Motor DC

Seperti yang sudah dijelaskan sebelumnya bahwa motor terdiri atas 2 bagian utama yaitu stator dan motor. Pada stator terdapat lilitan (winding) atau magnet permanen, sedangkan rotor adalah bagian yang dialiri dengan sumber arus DC. Arus yang melalui medan magnet inilah yang menyebabkan rotor dapat berputar. Arah gaya elektromagnet yang ditimbulkan akibat medan magnet yang dilalui oleh arus dapat ditentukan dengan menggunakan kaidah tangan kanan.


          

Keuntungan utama motor DC adalah sebagai pengendali kecepatan, yang tidak mempengaruhi kualitas pasokan daya. Motor ini dapat dikendalikan dengan mengatur:
• Tegangan dinamo : meningkatkan tegangan dinamo akan meningkatkan kecepatan
• Arus medan : menurunkan arus medan akan meningkatkan kecepatan.
 

Mekanisme Kerja Motor DC

Mekanisme kerja untuk seluruh jenis motor secara umum sama
Arus listrik dalam medan magnet akan menimbulkan gaya.
· Jika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran/loop, maka kedua sisi loop yaitu pada sudut kanan medan magnet akan mendapat gaya pada arah yang berlawanan.
· Pasangan gaya menghasilkan torsi untuk memutar kumparan.
· Motor- motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putar yang lebih seragam dari medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan

Beberapa kerugian penggunaan motor DC:

-Perawatan intensif karena brush atau sikat pada motor DC akan aus.

-Konversi arus AC menjadi arus DC menggunakan konverter memerlukan biaya yang mahal.

Keuntungan penggunaan motor DC:

-Kecepatannya mudah diatur.

Perhitungan pada motor DC :


Daya input      :           Pin= √3 Vrms Irms cosƟ

Daya output    :           Pout= Tout w

w = kecepatan sudut

Tout = torsi output

Efisiensi          :           η (%) = (Pout/Pin) x 100

 

Mengapa terdapat efisiensi pada motor? Karena motor yang digunakan tidak dapat bersifat ideal, artinya pada motor ada kehilangan daya pada setiap prosesnya sehingga daya output akan bernilai lebih kecil daripada daya input. Kehilangan daya ini biasa disebut sebagai rugi-rugi daya dan dapat disebabkan karena mechanical (gesekan dan rotasi) serta electric (hambatan pada belitan).

Simbol motor listrik
 

d. Transistor NPN
Fungsi-fungsi Transistor diantaranya adalah :

  • sebagai Penyearah,
  • sebagai Penguat tegangan dan daya,
  • sebagai Stabilisasi tegangan,
  • sebagai Mixer,
  • sebagai Osilator
  • sebagai Switch (Pemutus dan Penyambung Sirkuit)

Struktur Dasar Transistor

Pada dasarnya, Transistor adalah Komponen Elektronika yang terdiri dari 3 Lapisan Semikonduktor dan memiliki 3 Terminal (kaki) yaitu Terminal Emitor yang disingkat dengan huruf “E”, Terminal Base (Basis) yang disingkat dengan huruf “B” serta Terminal Collector/Kolektor yang disingkat dengan huruf “C”. Berdasarkan strukturnya, Transistor sebenarnya merupakan gabungan dari sambungan 2 dioda. Dari gabungan tersebut , Transistor kemudian dibagi menjadi 2 tipe yaitu Transistor tipe NPN dan Transistor tipe PNP yang disebut juga dengan Transistor Bipolar. Dikatakan Bipolar karena memiliki 2 polaritas dalam membawa arus listrik.

NPN merupakan singkatan dari Negatif-Positif-Negatif sedangkan PNP adalah singkatan dari Positif-Negatif-Positif.

Berikut ini adalah gambar tipe Transistor berdasarkan Lapisan Semikonduktor yang membentuknya beserta simbol Transistor NPN dan PNP.

Tipe Transistor NPN dan PNP beserta simbolnya

Cara Mengukur Transistor

Kita dapat menggunakan Multimeter Analog maupun Multimeter Digital untuk mengukur ataupun menguji apakah sebuah Transistor masih dalam kondisi yang baik. Perlu diingatkan bahwa terdapat perbedaan tata letak Polaritas (Merah dan Hitam) Probe Multimeter Analog dan Multimeter Digital dalam mengukur/menguji sebuah Transistor.

Berikut ini adalah Cara untuk menguji atau mengukur Transistor dengan Mengunakan Multimeter Analog dan Multimeter Digital.

A. Mengukur Transistor dengan Multimeter Analog

Cara mengukur Transistor dengan Multimeter Analog

Cara Mengukur Transistor PNP dengan Multimeter Analog

1. Atur Posisi Saklar pada Posisi OHM (Ω) x1k atau x10k
2. Hubungkan Probe Merah pada Terminal Basis (B) dan Probe Hitam pada Terminal Emitor (E), Jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik
3. Pindahkan Probe Hitam pada Terminal Kolektor (C), jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik.

Cara Mengukur Transistor NPN dengan Multimeter Analog

1. Atur Posisi Saklar pada Posisi OHM (Ω) x1k atau x10k
2. Hubungkan Probe Hitam pada Terminal Basis (B) dan Probe Merah pada Terminal Emitor (E), Jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik
3. Pindahkan Probe Merah pada Terminal Kolektor (C), jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik.

Catatan :
Jika Tata letak Probe dibalikan dari cara yang disebutkan diatas, maka Jarum pada Multimeter Analog harus tidak akan bergerak sama sekali atau “Open”.


B. Mengukur Transistor dengan Multimeter Digital

Pada umumnya, Multimeter Digital memiliki fungsi mengukur Dioda dan Resistansi (Ohm) dalam Saklar yang sama. Maka untuk Multimeter Digital jenis ini, Pengujian Multimeter adalah terbalik dengan Cara Menguji Transistor dengan Menggunakan Multimeter Analog.

Cara Mengukur Transistor dengan Multimeter Digital

Cara Mengukur Transistor PNP dengan Multimeter Digital


1. Atur Posisi Saklar pada Posisi Dioda
2. Hubungkan Probe Hitam pada Terminal Basis (B) dan Probe Merah pada Terminal Emitor (E), Jika Display Multimeter menunjukan nilai Voltage tertentu, berarti Transistor tersebut dalam kondisi baik
3. Pindahkan Probe Merah pada Terminal Kolektor (C), jika Display Multimeter nilai Voltage tertentu, berarti Transistor tersebut dalam kondisi baik.

Cara Mengukur Transistor NPN dengan Multimeter Digital


    1. Atur Posisi Saklar pada Posisi Dioda
    2. Hubungkan Probe Merah pada Terminal Basis (B) dan Probe Hitam pada Terminal Emitor (E), Jika Display Multimeter menunjukan nilai Voltage tertentu, berarti Transistor tersebut dalam kondisi baik
    3. Pindahkan Probe Hitam pada Terminal Kolektor (C), jika Display Multimeter menunjukan nilai Voltage tertentu, berarti Transistor tersebut dalam kondisi baik.
Catatan :
Jika Tata letak Probe dibalikan dari cara yang disebutkan diatas, maka Display Multimeter Digital harus tidak akan menunjukan Nilai Voltage atau “Open”.

Simbol Transistor

e. Relay

Relay adalah komponen elektronika berupa saklar elektronik yang digerakkan oleh aruslistrik. Secara prinsip, relay merupakan tuas saklar dengan lilitan kawat pada batang besi (solenoid) di dekatnya.Ketika solenoid dialiri aruslistrik, tuasa kantertarik karena adanya gaya magnet yang terjadi pada solenoid sehingga kontak saklarakan menutup. Pada saat arus ihentikan, gaya magnet akan hilang, tuasakan kembalikeposisi semula dan konta ksaklar kembali terbuka.Relay biasanya digunakan untuk menggerakkan arus / tegangan yang besar (misalnyaperalatanlistrik 4 A / AC 220 V) denganmemakaiarus / tegangan yang kecil (misalnya 0.1 A / 12 Volt DC). 

Gambar Bentuk dan Simbol Relay

Gambar bentuk dan Simbol relay


 Struktur dasar Relay

Fungsi-fungsi dan Aplikasi Relay

Beberapa fungsi Relay yang telah umum diaplikasikan kedalam peralatan Elektronika diantaranya adalah :

  1. Relay digunakan untuk menjalankan Fungsi Logika (Logic Function)
  2. Relay digunakan untuk memberikan Fungsi penundaan waktu (Time Delay Function)
  3. Relay digunakan untuk mengendalikan Sirkuit Tegangan tinggi dengan bantuan dari Signal Tegangan rendah.
  4. Ada juga Relay yang berfungsi untuk melindungi Motor ataupun komponen lainnya dari kelebihan Tegangan ataupun hubung singkat (Short).

e. Sensor Pir

Sensor PIR merupakan sensor yang dapat mendeteksi pergerakan, dalam hal ini sensor PIR banyak digunakan untuk mengetahui apakah ada pergerakan manusia dalam daerah yang mampu dijangkau oleh sensor PIR. Sensor ini memiliki ukuran yang kecil, murah, hanya membutuhkan daya yang kecil, dan mudah untuk digunakan. Oleh sebab itu, sensor ini banyak digunakan pada skala rumah maupun bisnis. Sensor PIR ini sendiri merupakan kependekan dari “Passive InfraRed” sensor.

Bagian-Bagian Sensor PIR

Gambar berikut menunjukkan bagian-bagian dari sensor PIR yang perlu untuk diketahui

Bagian Sensor PIR
Bagian Sensor PIR
  1. Pengatur Waktu Jeda : Digunakan untuk mengatur lama pulsa high setelah terdeteksi terjadi gerakan dan gerakan telah berahir. *
  2. Pengatur Sensitivitas : Pengatur tingkat sensitivitas sensor PIR *
  3. Regulator 3VDC : Penstabil tegangan menjadi 3V DC
  4. Dioda Pengaman : Mengamankan sensor jika terjadi salah pengkabelan VCC dengan GND
  5. DC Power : Input tegangan dengan range (3 – 12) VDC (direkekomendasikan menggunakan input 5VDC).
  6. Output Digital : Output digital sensor
  7. Ground : Hubungkan dengan ground (GND)
  8. BISS0001 : IC Sensor PIR
  9. Pengatur Jumper : Untuk mengatur output dari pin digital.

Cara Kerja PIR

Pada umumnya sensor PIR dibuat dengan sebuah sensor pyroelectric sensor (seperti yang terlihat pada gambar disamping) yang dapat mendeteksi tingkat radiasi infrared. Segala sesuatu mengeluarkan radiasi dalam jumlah sedikit, tapi semakin panas benda/mahluk tersebut maka tingkat radiasi yang dikeluarkan akan semakin besar. Sensor ini dibagi menjadi dua bagian agar dapat mendeteksi pergerakan bukan rata-rata dari tingkat infrared. Dua bagian ini terhubung satu sama lain sehingga jika keduanya mendeteksi tingkat infrared yang sama maka kondisinya akan LOW namun jika kedua bagian ini mendeteksi tingkat infrared yang berbeda (terdapat pergerakan) maka akan memiliki output HIGH dan LOW secara bergantian.

Grafik Sensor Pir

 


Percobaan

a. Prosedur Percobaan

1. Hubungkan lah semua komponen rangkaian sesuai gambar rangkaian
2. Hubungkan rangkaian ke generator DC
3. Apabila ada getaran atau gempa, maka pintu akan terbuka
4. Apabila pintu selesai terbuka, maka motor akan berhenti dan lampu menyala
5. Ketika gempa atau getaran mereda, motor akan berhenti, sehingga pintu bisa ditutup
6. Ketika pintu ditutup, maka logika sensor PIR bernilai 1 yang menyebabkan lampu mati

B. Rangkaian


C. Prinsip Kerja

    Ketika ada getaran atau gempa, maka sensor getaran akan berlogika 1, yang menyebabkan sensor getaran akan mengalirkan arus ke kaki basis transistor, yang menyebabkan transistor akan ON karena telah memenuhi syarat untuk aktifnya transistor. Ketika transistor aktif maka collector dan emitor akan terhubung sehingga arus akan mengalir dari baterai menuju relay,lalu collector, kemudian emitor, menuju ground yang menyebabkan relay ON sehingga switch bergeser ke kiri yang akan menguhubungkan arus dari supply ke motor lalu ke ground sehingga motor pun hidup dan pintu akan terbuka.
    ketika pintu terbuka dan mendekati sensor pir, ketika sensor pir mendeteksi adanya benda, maka arus akan mengalir dari sensor PIR ke basis transistor yang menyebabkan transistor ON dan kaki colector terhubung dengan emittor yang menyebabkan pengurangan tegangan pada kaki basis transistor 1 karena tegangan mengalir dari supply, menuju sensor getaran, lalu tegangan kaki basis transistor akan 1 terbagi 2 yang menyebabkan tegangan tidak mencukupi untuk aktifnya transistor sehingg relay OFF dan arus dari supply ke motor akan terputus sehingga motor akan mati. Di lain sisi, aktifnya transistor 2 akan mengaktifkan relay 2 yang menyebabkan arus akan mengalir dari supply, menuju relay, lalu collector, dan emitor, dan terus ke ground yang menyebabkan relau ON sehingga switch akan bergeser ke kiri yang menyebkan arus akan mengalir dari power supply, menuju lampu, dan terus ke ground sehingga lampu pun akan hidup.

C. Video Simulasi


E. Link Download

File HTML, Video, Data Sheet, LIbrary : Download

Komentar

Postingan populer dari blog ini

Halaman Awal